
Swissloop Tunneling - Press Kit DE 2022 - 2023

Not-a-Boring-Competition 2023

Die Competition fordert Teams heraus, neue Lösungen für den Tunnelbau zu entwickeln und dabei schneller zu sein, als eine Schnecke kriechen kann. Die «The Boring Company» hat 5 Finalisten-Teams aus der ganzen Welt eingeladen, ihre eigene Tunnelbaulösung an der zweiten Not-a-Boring-Competition vom 25. März bis 2. April 2023 in Bastrop, Texas, USA zu präsentieren. Dabei gewann Swissloop Tunneling den Innovation & Design Award und nahm zudem den zweiten Platz im gesamten Wettbewerb ein. Die Gewinnkategorien beinhalteten:

Overall Competition: 1st TUM Boring, 2nd Swissloop Tunneling

• Innovation & Design Award: Swissloop Tunneling

Navigationssystem Award: CU Hyperloop

Bereits 2021 konnte Swissloop Tunneling bei der ersten Not-a-Boring-Competition den zweiten Platz und den Innovation & Design Award gewinnen. Unsere Tunnelbohrmaschine Groundhog Beta besitzt im Vergleich zur Groundhog Alpha einen neuen verbesserten Linermechanismus und eine neuen Erosionmechanismus.

Kommerzielle Anwendung – Spinoff

Nach zweieinhalb Jahren seit der Gründung von Swissloop Tunneling, arbeitet eine Gruppe aus Teammitgliedern an der Kommerzialisierung unserer Technologie für Anwendungen im Microtunnelingbereich. Das Spinoff UNDER INDUSTRIES ist eine eigenständige Gesellschaft. Swissloop Tunneling wird weiter wie bisher als Verein und auf freiwilligen Basis weitergeführt. Eine dritte Not-a-Boring-Competition wurde bereits angekündigt.

Projektbeschreibung & Rückblick

Swissloop Tunneling ist ein studentischer Verein der Eidgenössischen Technischen Hochschule (ETH) Zürich, der Universität St. Gallen und weiterer Schweizer Universitäten und forscht an neuen Lösungen in der Tunnelbauindustrie. Im Jahr 2021 designte und baute das Swissloop Tunneling Team seine Tunnelbohrmaschine «Groundhog Alpha», benannt nach einem der raffiniertesten tunnelbauenden Tiere unserer Natur, dem Murmeltier. Mit einem einzigartigen Steuerungsmechanismus und fortschrittlichen Tunnelauskleidungssystem war «Groundhog Alpha» wendiger als konventionelle Lösungen und fähig, die Tunnelinnenwand während eines ununterbrochenen Bohrprozesses zeitgleich 3D zu drucken. Diese neuartige Lösung bietet entsprechende Vorteile, die bis anhin fehlen.

Nachdem Swissloop Tunneling aus über 400 Bewerbenden ausgewählt wurde, ist das Team als Teil der «digging dozen» - die zwölf Finalisten-Teams – eingeladen worden,

«Groundhog Alpha» an Elon Musk's Not-a-Boring-Competition vom 6. bis 12. September 2021 in Las Vegas zu präsentieren. «Groundhog Alpha» wurde seit der Teilnahme an der Not-a-Boring-Competition stets weiterentwickelt. Die im Jahr 2022 zu «Groundhog Beta» weiterentwickelte Maschine behält alle funktionalen Stärken des Alpha-Modells. Allerdings ist «Groundhog Beta» vor allem in der Navigation und im Bewegungsmechanismus entscheidend intelligenter und dementsprechend effizienter geworden.

Aktuelle Herausforderungen in der Tunnelbau-Industrie

Eines der signifikantesten Probleme der Tunnelbauindustrie heutzutage sind die hohen Kosten wie auch herausfordernde Logistikprozesse. Die Tunnelbohrmaschinen und Tübbing-Teile sind schwer und müssen üblicherweise über hunderte von Kilometern zur Tunnelbaustelle transportiert werden. Zudem stehen konventionelle Tunnelbohrmaschinen für längere Zeiten während des Versetzens der Tübbing-Teile still.

Unter diesen Umständen ist das Hyperloop-Konzept unmöglich zu realisieren über die weiten Distanzen, die mit Tunnelstrecken zu erschliessenden wären. Die aktuell üblichen Tunnelbohrmaschinen (welche für den Strassenbau benötigt werden) sind nicht standardisiert und zu teuer, um die hunderten von Kilometern an Tunneln zu meistern, die für die hochskalierten Hyperloop-Netzwerke benötigt werden. Des Weiteren ist der Rohrvortrieb, welcher als standardisierte Lösung gilt, um kürzere Tunnel mit kleinerem Durchmesser zu bauen, nicht skalierbar für Hyperloopdurchmesser von ungefähr 4 Metern. Aus diesem Grund entwickelt Swissloop Tunneling noch geringskalierte Tunnelbohrmaschinen mit innovativer Fertigungstechnologie, die auf grössere Dimensionen in Zukunft hochskaliert werden sollen.

Hyperloop-Konzept

Hyperloop ist eine neue Form des Transports, die Probleme heutiger konventioneller Mobilitätssysteme überwinden soll. Mit Hyperloop als futuristisches Transportkonzept würden Transportwagen mittels der Nutzung eines Vakuums innerhalb von Tunnelröhren auf Höchstgeschwindigkeit beschleunigt. So können Personen sowie Güter kostengünstig und zeitsparend über weite Strecken befördert werden. Diese Technologie ist zudem nachhaltiger und mit erzielten Geschwindigkeiten von über 1000 km/h (600mph) im Transport schneller als aktuelle Hochgeschwindigkeitszüge und Flugzeuge.

Loop-Konzept

Das Konzept Loop ist ein unterirdisches, vollelektronisches und emissionsfreies Hochgeschwindigkeits-Transportsystem für den öffentlichen Verkehr. Damit werden Passagiere zu ihrem Zielort ohne Zwischenhalt transportiert. Das Konzept ist auch bekannt als «Teslas in Loops» und ähnelt mehr einer Untergrundautobahn als einem U-Bahn-System. Das Konzept erlaubt es, mit Loop-Fahrzeugen schneller zu reisen als mit konventionellen U-Bahn-Fahrzeugen (bis zu 250km/h (150 mph) vs. bis zu 100km/h (65 mph)).

Vision

Die Vision von Swissloop Tunneling ist es, den Status-Quo der Tunnelbauindustrie zu übertreffen und Tunnelbau nachhaltiger, kostengünstiger und schneller zu machen. Dazu betreibt Swissloop Tunneling Forschung an neuen und innovativen Tunnelbohrmechanismen. Das Ziel mit «Groundhog Beta» ist es, unsere Tunnelbohrgeschwindigkeit zu erhöhen und Prozesse so zu optimieren, dass Tunnelbaukosten in Zukunft massgeblich reduziert werden. Dies ist auch notwendig, um der infrastrukturellen Herausforderung des Hyperloop-Konzepts gewachsen zu sein, welches hunderte Kilometer an Tunnelstrecke erfordern würde.

Swissloop Tunnelings Vision geht weit über die internationalen Wettbewerbe hinaus. Die langfristige Vision für dieses Projekt ist die Entwicklung innovativer (Mikro-)Tunnellösungen durch ständige Optimierung der technischen Systeme und das Lernen aus den Erfahrungen, die während der Wettbewerbe gemacht wurden. In den nächsten Jahren strebt das Swissloop Tunneling Team an, den Durchmesser der Prototypen zu vergrössern und den Linermechanismus marktfähig zu machen. Das Spinoff «Under Industries» arbeitet an der Kommerzialisierung unserer Tunnelbautechnologie.

Erosions- und Steuerungs-Subsystem transportiert mittels einem 25t-Kran

Swissloop Tunneling Journey

Elon Musk hat vier SpaceX Hyperloop Competitions durchgeführt, an denen Studierende aus der ganzen Welt prototypische «Pods» konstruierten, die Transportobjekte, in denen Menschen und Güter im Rahmen des Hyperloopkonzepts transportiert würden. Am Ende der Hyperloop Competition von 2019 kündigte Elon Musk an, dass die «The Boring Company» einen Tunnelbohr-Wettbewerb in Zukunft durchführen wird. Im Sommer 2020 wurde dies offiziell kommuniziert. In der Folge wurde an der ETH Zürich von vier ehemaligen Mitgliedern von Swissloop, das Schweizer Team, welches zuvor an den Hyperloop Competitions teilnahm, schliesslich Swissloop Tunneling gegründet.

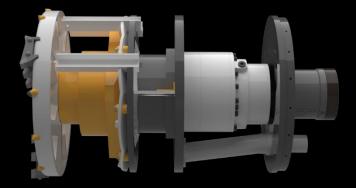
Heute bringt diese Studenteninitiative über 70 Studierende aus dem Maschinenbau, der Elektrotechnik, dem Bauingenieurswesen und verschiedenen Wirtschaftsdisziplinen zusammen. Das Team aus Mitgliedern der ETH Zürich und anderen Schweizer Universitäten wie der Universität St. Gallen (HSG) ist stolz, die Schweiz als einziges Schweizer Team in der Finalrunde der Not-a-Boring-Competition zu vertreten. Dies, nachdem es aus ursprünglich über 400 Bewerbenden selektiert wurde.

Groundhog Beta

Im Laufe des Jahres 2022 designte, baute und testete das Team von Swissloop Tunneling weiter und optimierte seine Tunnelbohrmaschine von «Groundhog Alpha» zu «Groundhog Beta». Schon seit dem ersten Modell «Groundhog Alpha» verfolgt Swissloop Tunneling einen sehr innovativen und anspruchsvollen Ansatz. Swissloop Tunneling ist überzeugt, dass dieser Ansatz die Basis für zukünftige Tunnelbohrlösungen sein wird.

Eigenschaften

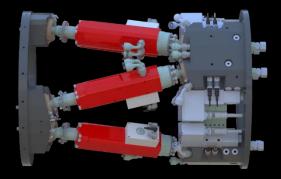
Länge: 8.19 mGewicht: 3.1 t


Durchmesser: 0.606 mAntriebskraft: 200 kN

Drehzahl: 940 rpmBohrkopf: 12 rpm

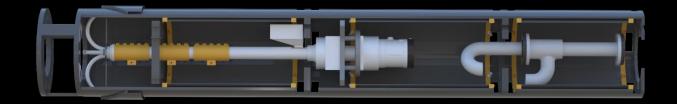
• Zielgeschwindigkeit: 1 cm/s

Erosion

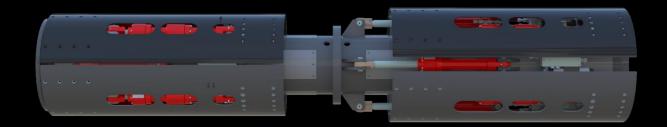

Mit dem Erosion-System werden Innerhalb eines Schutzpanzers Wasserstrahlen mit Bodenzersetzungsschaum für fetten Lehm verwendet, um dieses Material erodieren zu können. Ein rotierender Brecher kümmert sich um die grösseren Pflastersteine und bereitet sie für die Strahlpumpe vor, die das Trümmergut aus dem Tunnel befördert. Nachdem die Trümmerteile eine Trennanlage durchlaufen haben, kann das Wasser anschliessend wiederverwendet werden. Betrieben wird das Erosion-System von «Groundhog Beta» mittels eines Hydraulikmotors und verfügt über ein neues Getriebe. Das Vorgängermodell mit dem alten Getriebe wurde noch mittels eines Elektromotors betrieben. Mit einem Drehmoment von 8,5 kNm, einer Rotationsgeschwindigkeit von 12 U/min und einer Schubkraft von 200kN ist Swissloop Tunneling auf alle Bodenverhältnisse vorbereitet, die sich «Groundhog Beta» in den Weg stellen werden.

Steering

Um Kurven graben zu können, wird ein massgeschneidertes hydraulisches Hexapod-System genutzt. Mit sechs hydraulischen Präzisionszylindern kann der Bohrkopf in sechs Freiheitsgraden bewegt werden. Mit einer speziellen Software können wir unsere Maschine in einen Presslufthammer-Modus versetzen, womit Schwingungen über hohe Frequenzen von bis zu 20 Hz erzeugt werden können.


Sechs leistungsstarke hydraulische Buchsen sind so positioniert, dass sie einen Stewart-Mechanismus auslösen, der die vollständige Kontrolle der Bewegung des Vorderteils zulässt. Dies ermöglicht es auch, den Erosionsmechanismus zu unterbinden und korrigierend in die Position des Vorderteils einzugreifen, wenn dieses klemmt.

Liner


Die Tunnelwand wird direkt über einem Teil der Tunnelbohrmaschine gefertigt, nämlich dem Liner. Die Auskleidung besteht aus einem Polymer-Granulat, das unterirdisch extrudiert wird und die Tunnelstruktur als Rohr zurücklässt. Dieses Rohr hat dann genügend Kraft, um den Kräften des Maschinenantriebs und des Umgebungsdrucks der Erde hochverlässlich gewachsen zu sein. Der Liner von «Groundhog Beta» umgeht die Schwierigkeiten des ehemaligen Zweikomponentensystems und es wurde entschieden, eine umweltfreundlichere PLA-Liner-Lösung zu verwenden. «Groundhog Beta» ist damit im Drucken der Tunnelwand einen entscheidenden Schritt weitergekommen. Dasselbe Material wie in konventionellen 3D-Druckern wird verwendet, womit das verwendete Material günstiger und verfügbarer ist. Zusätzlich kann dieses Material als Feststoff in die Maschine transportiert werden und der Maschinenbetrieb muss seltener unterbrochen werden, da das PLA-Material bedarfsgerecht abgekühlt und wieder erhitzt werden kann.

Zur Herstellung der Tunnelwand ist eine Extrusionsschraube in die Maschine eingebaut. Ein Polymer-Granulat wird mittels Luftdrucks in die Tunnelröhre befördert und dort über die Extrusionsschraube in die passende Form geschmolzen. Nach der Kühlung des Materials mittels einer Kühlflüssigkeit entsteht eine 15 mm dicke und hochverlässliche Tunnelwand. Dies sichert die strukturelle Integrität über die gesamte Länge des Tunnels.

Propulsion

Das Propulsion-Element besteht aus zwei unabhängigen hydraulischen Spannmechanismen, die gegen die Tunnelwand Kraft ausüben und die Tunnelbohrmaschine nach vorne schieben. Dies ermöglicht eine kontinuierliche Bewegung durch einen alternierenden Wechsel der Mechanismen oder mittels Verdoppelung der Antriebskraft bei gleichzeitiger Verwendung. In der Propulsion Sektion pressen 16 aufeinander abgestimmte Hochleistungshydraulikzylinder kontinuierlich gegen die Tunnelwand, was eine ununterbrochene Bewegung und eine Vortriebskraft von max. 200kN ermöglicht.

Starting Platform

Von der Oberfläche aus startend muss das Team aufgrund der Starting Platform keine Startgrube ausheben, sodass «Groundhog Beta» schneller mit dem Graben beginnen kann. Die für das neue Modell «Groundhog Beta» ebenfalls erneuerte Starting-Plattform nimmt die gesamten Antriebskräfte der Tunnelbohrmaschine auf und fungiert als Orientierungshilfe für die Maschine.

Kontaktieren Sie uns

Yannick Albrecht
Head of Design & Communication
yannick.albrecht@swisslooptunneling.ch
+41 (0)76 396 05 08

Stefan Kaspar Founder & Co-President stefan.kaspar@swisslooptunneling.ch +41 (0)78 605 71 82